Dougherty Valley HS Chemistry - AP Electrochemistry – Study Questions

Name:

Period:

Seat#:

Worksheet #4

Directions: Use half-reactions and/or reduction tables to answer the following questions. Remember to use binder paper for more space if needed – there is so much to keep track of when doing redox problems, don't get questions wrong because you weren't using enough binder paper! ③

Write the equations for the reaction between iron and a solution of silver nitrate to produce Fe(II) ions and silver metal.
a. Write the balanced half-cell reactions

b. Write the overall balanced equation for the reaction

c. Draw a diagram of the cell and calculate the standard cell potential. <u> $E^{\circ} = +1.24V$ </u>

2) Balance the following reactions in acidic solutions:

a. Al(s) + Ag⁺ (aq) \rightarrow Al³⁺ (aq) + Ag(s)

b. Fe^{2+} (aq) + $Cr_2O_7^{2-}$ (aq) $\rightarrow Cr^{3+}$ (aq) + Fe^{3+} (aq)

6, 1, 14H⁺, 2, 6, 7H₂O

1, 3, 1, 3

c. $MnO_4^-(aq) + H_2SO_3(aq) \rightarrow Mn^{2+}(aq) + SO_4^{2-}(aq)$

<u>2, 5, 6H+, 2, 5, 3H₂O</u>

Dougherty Valley HS Chemistry - AP Electrochemistry – Study Questions

3) Consider the following pairs of half-reactions, decided which of the two half-reactions will occur at the anode and which will occur at the cathode, draw diagrams for the cells, and calculate the standard cell potentials:

		agrains for the ce	is, and calculate the standard cell potentials.
а.	Co^{2+} (aq) + 2e ⁻ \rightarrow Co(s)		
	Ag^{+} (aq) + $e^{-} \rightarrow Ag(s)$		
		<u>E°cell = +1.08V</u>	
b.	$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$		
	$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$		
		<u>E°cell = +0.59V</u>	
C.	Sn^{2+} (aq) + 2e ⁻ \rightarrow Sn(s)		
	Mg^{2+} (aq) + 2e ⁻ \rightarrow Mg(s)		
		<u>E°cell = +2.23V</u>	
		<u>L CEII = +2.23V</u>	

The reaction of copper metal with silver ions in a solution of silver nitrate is spontaneous (*Hint - makes Cu²⁺)
a. Calculate the standard cell potential to show that this is so.

b. From the cell potential calculate the value of the equilibrium constant for the reaction at 25°C.

c. From the equilibrium constant, or from the cell constant, calculate the standard free energy change for the reaction. Indicate clearly how these three quantities are related $\Delta G^{\alpha} xn = -88.8 \text{ kJ}$

Dougherty Valley HS Chemistry - AP Electrochemistry – Study Questions

5)	A copper-zinc voltaic cell is constructed using 100 mL solutions of 1M solutions of copper sulfate and zinc sulfate with
	a sodium sulfate salt bridge. After some time, t, has passed at 25° C, the concentration of the Zn ²⁺ ions in the anode half cell had increased to 1.50M and the concentration of the Cu ions in the cathode half-cell had decreased to 0.50M. (<i>*Hint - makes Cu</i> ²⁺)

a. Calculate the initial cell potential. <u>$E^{\circ}cell = +1.100V$</u>	
---	--

b. Calculate the cell potential at time t. <u> $E^{\circ}cell = +1.086V$ </u>

c. Calculate the total charge provided by the cell. <u>9648.5 C</u>

d. Calculate (approximately) the energy provided by the cell. 105 kJ